• Mike Adelstein
  • March 23, 2021

Potomac Photonics Blog – Microneedles for vaccine delivery

Potomac Photonics Blog – Microneedles for vaccine delivery

Microneedle-based drug delivery has the potential to be a transformative technology for the delivery of biologics and vaccines. It may provide enhanced therapeutic profiles for therapeutics and vaccines. It allows for the administration of lower levels of drugs to achieve the same therapeutic endpoints. Additionally, microneedles provide an alternative to traditional hypodermic needles. This industry provides a means to overcome one of the biggest barriers to patient compliance and safety for the treatment of chronic diseases and routine vaccination. The variation in the microneedle types could also prove useful in controlling the kinetics of vaccine release. The importance of overcoming stratum corneum barrier is central to the efficient Microneedle-mediate transdermal and intradermal delivery. 1,2

Several new transdermal products mediated by microneedle methods have already been marketed and a few others reach their late-stage development. According to “The Microneedles for Transdermal and Intradermal Drug Delivery, 2014-2030” report, more than 70% of the products in development are patches incorporating solid or dissolvable needles, the rest are hollow microneedle arrays that employ the use of a syringe. However, microneedle technologies have not reached their full maturity, yet due to a lack of cost-effective manufacturing technologies. With several new microneedle-based therapeutic product launches by the end of this decade, the report concludes that the overall market for microneedle-based delivery devices will reach annual sales of 485 million units by 2030. https://www.medicaldesignandoutsourcing.com/microneedle-patches-enable-superior-drug-delivery

The images shown here are microneedle molds (diameters of 250 µm to 1 mm) prepared using Potomac’s precision laser etching technologies.

References:

  1. Tuan-Mahmood, T.-M. et al. Microneedles for intradermal and transdermal drug delivery. Eur. J. Pharm. Sci. 50, 623–37 (2013).
  2. Rouphael, N. G. et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet 390, 649–658 (2017).

 

 

Other Posts

Potomac Automates Quality Control Inspection via In-house Innovative Software Development

Today, speed is the name of the game.  But speed without accuracy in all its forms defeats the purpose of fast delivery.  At Potomac, we provide some of the quickest turnaround in manufacturing for medical device, microfluidic, biotech, consumer product and microelectronics customers also with the highest level of quality. Meeting customer specifications is especially…

  • Potomac Photonics
  • February 8, 2021

Microfluidic Concentration Gradient Generators – Potomac Photonics

Joe La Fiandra University of Maryland College Park (UMCP) Major: Bioengineering Minor: Global Engineering Leadership   Microfluidic Concentration Gradient Generators Many biochemical processes in biological organisms are controlled by concentration gradients. From cell migration to drug proliferation, concentration gradients are integral to the transportation of a vast array of substances throughout the body. Until recently,…

  • Potomac Photonics
  • January 26, 2021

Potomac Photonics Looks Back On a Year of
Using Advanced Manufacturing to Fight Coronavirus

2020 has been a year when the human spirit rose up in the face of adversity to help save our fellow man during the Coronavirus pandemic.  Frontline nurses and doctors in hospital ER’s and ICU’s worked tirelessly with the sick and dying, long-term healthcare facility workers cared for the elderly and infirmed, food producers and…

  • Potomac Photonics
  • December 28, 2020