UCSC Uses Potomac to Help Monitor Cell Cultures

UCSC Uses Potomac to Help Monitor Cell Cultures

Laser drilled holes in glass slide for microfluidic device.

Anna The Manufacturing Maven: Blog #3

Cells. The smallest units of life. They make up who we are, and so, it’s imperative we become progressively educated about them. Cell culturing allows scientists to grow and maintain cells, in vitro. Researchers at the University of California, Santa Cruz are currently developing a more efficient way to monitor human cell cultures, encased in microfluidic device channels.

For concentrated research, the cell cultures require close examination, and therefore must be inspected underneath a microscope. Their team is working to build microelectrode arrays, to monitor the cell cultures from the chip, itself. Because the scientists want the greatest possible clarity of the cultures, they have figured a way to fix the microfluidic device for optimal visuals of the cultures.

Potomac drilled the university’s requested holes for the devices into borosilicate glass substrate. Using a UV laser to drill the holes, the technicians successfully fabricated the devices, minimizing the consequences of heat produced by standard lasers.

The holes allow the researchers to “build all the fluidic connections”, as UCSC’s John Selberg put it, on the backside of the device. By doing this, they can image the front side, without interference between the cells and the microscope.

Cells must work cooperatively for their host to function and to accomplish a common goal–to maintain homeostasis. With a project like the one for UCSC, the company must act similarly. Departments like Production and Quality Control work in tandem to provide the best part for the customer’s needs.

We wish the University of California, Santa Cruz luck on their impressive scientific endeavors!

 

 

Other Posts

New NIST Heart on a Chip Microfluidic Platform Speeds Drug Discovery & Commercialization 

Animal testing has long been an established protocol in drug discovery programs. But there are systemic issues with the far from reliable methodology. In fact, only 10% of the drugs that move from animal testing to human clinical trials succeeds. Such low yields increase the time and expense required to get pharmaceuticals to market, fueling…

  • Potomac Photonics
  • March 12, 2024

Precision Laser Drilling of Glass Slides and Coverslips for Microfluidics and Biotech Applications

In the field of microfluidics, where precision is key to innovation and application success, our expertise at Potomac Photonics sets a standard. We specialize in the art of laser drilling precise small holes in glass slides and coverslips, a critical capability for the fabrication of microfluidic devices. These devices play a pivotal role in various…

  • Potomac Photonics
  • February 5, 2024

Machine Learning: Applying AI to Manufacturing at Potomac Photonics

The world today seems consumed with fears about Artificial Intelligence, otherwise known as AI. Writers, journalists, ad copywriters, teachers, and artists are fearful their jobs will be lost to computers but in manufacturing we have been applying a subset of AI to manufacturing for decades with positive results. Like other forms of AI, Machine Learning…

  • Potomac Photonics
  • November 12, 2023