• Mike Adelstein
  • January 27, 2014

UMBC Collaboration Continues Potomac’s Strong R&D Program

UMBC Collaboration Continues Potomac’s Strong R&D Program

Integration of microelectronics and microfluidics

Integration of microelectronics and microfluidics

New technologies and advances in automated machinery have given rise to a host of new contract service providers in the digital fabrication market.  But Potomac is different in that we do more than just purchase off the shelf machines.  Here at Potomac we have a 30-year history of R&D to drive fundamental understanding and improvement in digital fabrication tools and processes.  Potomac’s depth of knowledge helps our customers solve their manufacturing problems in unique and cost-effective ways that standard tools can’t match.

One of Potomac’s new areas of work is fabrication of advanced microfluidic devices.  We’re using new technologies such as hot embossing and 3D Printing in combination with laser micromachining to reduce fabrication time and cost.  As we manufacture for specific applications, customers are requesting advanced characterization and control of the fluids in the devices.  Responding to customer challenges, Potomac founder Dr. Paul Christensen started an R&D project to address the problems and also tapped the Mechanical Engineering Department at the University of Maryland, Baltimore County [UMBC].

Dr. Christensen’s new microfluidic R&D project draws from PotomacMeso’s recent results generated by a National Science Foundation SBIR Phase II grant to investigate new techniques for building highly miniaturized electronic systems.  He has devised ways to embed the smallest surface mount electronic components in a thermoset epoxy block and interconnect them with fine-feature nanoparticle silver conductors.  A sample structure is shown here.

At UMBC, Professor Tony Farquhar and Ph.D. student Amir Harandi have carried out in-depth studies of heating and cooling of microfluidic structures using patterned copper structures for heat transfer.  In the course of their work, they’ve developed a thorough understanding of issues involved in heating and cooling microfluidic systems, techniques for local temperature measurement, and expertise in thermal modeling and analysis.

It is our hope that both research areas can be combined to develop simple and inexpensive methods for customizable thermal distributions in a microfluidic structure, using surface mount electronic components.  Watch this space for updates on the R&D, as Potomac drives digital fabrication forward for improved microfluidic devices.

 

 

 

 

 

Other Posts

Potomac Photonics Blog – Microneedles for vaccine delivery

Microneedle-based drug delivery has the potential to be a transformative technology for the delivery of biologics and vaccines. It may provide enhanced therapeutic profiles for therapeutics and vaccines. It allows for the administration of lower levels of drugs to achieve the same therapeutic endpoints. Additionally, microneedles provide an alternative to traditional hypodermic needles. This industry provides…

  • Mike Adelstein
  • March 23, 2021

Potomac Automates Quality Control Inspection via In-house Innovative Software Development

Today, speed is the name of the game.  But speed without accuracy in all its forms defeats the purpose of fast delivery.  At Potomac, we provide some of the quickest turnaround in manufacturing for medical device, microfluidic, biotech, consumer product and microelectronics customers also with the highest level of quality. Meeting customer specifications is especially…

  • Potomac Photonics
  • February 8, 2021

Microfluidic Concentration Gradient Generators – Potomac Photonics

Joe La Fiandra University of Maryland College Park (UMCP) Major: Bioengineering Minor: Global Engineering Leadership   Microfluidic Concentration Gradient Generators Many biochemical processes in biological organisms are controlled by concentration gradients. From cell migration to drug proliferation, concentration gradients are integral to the transportation of a vast array of substances throughout the body. Until recently,…

  • Potomac Photonics
  • January 26, 2021