• Mike Adelstein
  • July 14, 2021

Delivering Parts at the Speed of Light for Protein Analysis Research at Arizona State University

Delivering Parts at the Speed of Light for Protein Analysis Research at Arizona State University

Small holes in glass.

The old days of university research labs having all the time in the world to complete experiments are gone. Like for everything else in the 21st century, time is of the essence for university researchers to compete in the latest grant rounds or to fulfill requirements for corporate partners. Speed is the name of the game in developing prototypes, new protocols, and innovative processes.

It is Potomac’s ability to save time that brought the Biodesign Center for Bioelectronics and Biosensors at Arizona State University’s (ASU) Biodesign Institute to us for laser micro-machining. Graduate Research Assistant Xinyu Zhou explains: “We tried to dig holes in our devices’ cover slips and had so much cracking of the glass, the time we wasted re-doing work was substantial.  Potomac saved us valuable time to meet our commitments!”

As described in the group’s Nature article, identification of proteins is key to biotech research.  Proteins can lead to disease diagnosis as well as vaccine development, important tools in a rapidly evolving field.

Laser processing of small features in glasswork coverslips

The ASU device needed 2 holes that were 1 mm in diameter and 0.17 mm deep.  In addition, the holes had to be placed with +/- 0.5 mm accuracy to ensure the bonding of multiple layers enabled the process to work.  Often it is placement accuracy that determines the success of a device.

Xinyu Zhou was particularly impressed by Potomac’s ability to laser micromachine in glass without cracking.  Glass is a hard and brittle solid with almost no internal crystalline structure.   So, in addition to using lasers in the ultraviolet region of the electro-magnetic spectrum, Potomac has developed unique methods to avoid heat build-up in the process.  The result is a clean cut with no cracking.

Glass is an important substrate in many biotech applications.  In recent years, more polymers such as COC exhibit the transparent qualities of glass and are far easier – read: cheaper – to machine.

Potomac’s ability to machine glass without cracking, accurately place small features, and deliver parts quickly ensured that the ASU research team could move at 21st century speeds.


Other Posts

Pushing the Limits in 2023

Even after decades of success helping innovators prototype and manufacture the next generation of products in a diverse range of industries, each year Potomac still evaluates how we can develop even more market specific products for the biotech, microfluidics, EV Battery, microelectronics, aerospace, and consumer markets. 2023 is no different. For the year ahead we…

  • Potomac Photonics
  • January 31, 2023

Combining 3D Printing & Microfluidic Devices at UMBC 

To Create Liver on a Chip Research via NIH Grant Drug discovery is in a radical digital transformation period. Historically, developing new pharmaceuticals has been a very long – think years or even decades – and expensive – think billions of dollars – process. A large part of the time and cost in bringing new…

  • Potomac Photonics
  • December 27, 2022

For National Breast Cancer Awareness Month:
Advancing Diagnostics & R&D with Microfluidic Technology

There is a reason that Media Personality Katie Couric announced her June breast cancer diagnosis in the first few days of October. The TV news pioneer strategically timed her public reveal with the start of National Breast Cancer Awareness Month. Started in 1991 by the National Breast Cancer Foundation, the annual month of educational activities…

  • Mike Adelstein
  • October 11, 2022