With the need to rapidly develop and commercialize new products including biopharmaceuticals, medical diagnostic kits and recombinant proteins and organisms, companies need the ability to rapidly perform chemical and biochemical experiments. In particular, the ability to scale up to tens of thousands, hundreds of thousands or even millions of experiments is a requirement in todays advanced molecular biology laboratories[1]. While conventional approaches utilize low throughput laboratory equipment like flasks and petri dishes or higher throughput but expensive robots and microtiter plates, droplet microfluidics enables a flexible, affordable, and customizable platform for performing high-throughput experiments in chemistry, microbiology and molecular biology.
Droplet microfluidics is currently being used for enzyme screening, nucleic acid sequencing, protein synthesis, small molecule and single cell analysis, organic and inorganic nanoparticle synthesis in both aqueous and organic systems[2]. Droplet “reactors” are generated on a specially designed microfluidic chip which enables thousands, tens of thousands or even millions of these tiny liquid reaction chambers to be precisely controlled in terms of size, shape, composition and temperature. The ability to manipulate and control these variables together with the ability to parallelize experiments makes droplet microfluidics ideal for processes that require both a high level of precision and a high number of experiments.
Advanced microfabrication technologies enable the flexible design of droplet microfluidic chips such that today a chip design can be customized to the specific application, rapidly prototyped for applications testing using a combination of photolithographic, direct machining and laser- based methods. A typical timeline for iterative prototyping and applications testing to finalize the chip design is 4 to 6 weeks.
Potomac Photonics’ Product & Process Technology team has the expertise to help you throughout the entire product development lifecycle. We will work with you to develop a customized project plan from design concept and prototyping through scale-up and high- volume manufacturing. Potomac microfluidic and microfabrication experts can even advise you on the design of a microfluidic chip customized for your application and will develop a detailed cost model that will enable you to predict how your unit costs will change as your production requirements increase.
Welcome to the inaugural post of our “Material Spotlight” blog series, where we delve into the unique materials available through Goodfellow and explore how Potomac Photonics’ advanced micromachining services can enhance their applications. Today, we focus on thin metal foils—versatile materials that play critical roles in various industries. Goodfellow is renowned for its extensive catalog…
In a significant move that promises to revolutionize the field of micro-manufacturing and materials supply, Goodfellow has recently acquired Potomac Photonics. This acquisition is not just a merger of two companies; it’s a strategic integration that exemplifies the adage, “1+1=3.” Here’s why this combination is a game-changer for customers across various industries. Expanding Horizons: From…
Episode #13 – Microfabrication: The New Services Available from Goodfellow https://www.goodfellow.com/usa/resources/ep-13-microfabrication-services-now-available/ In June 2024, Goodfellow acquired Potomac Photonics, seamlessly integrating their cutting-edge micromanufacturing services into the Goodfellow portfolio. This strategic acquisition expands Goodfellow’s capabilities to include specialized services such as small hole drilling, laser micro welding, micro CNC, and much more. It also marks the…