• Potomac Photonics
  • March 19, 2020

Droplet Microfluidics – Making an Impact

Droplet Microfluidics – Making an Impact

With the need to rapidly develop and commercialize new products including biopharmaceuticals, medical diagnostic kits and recombinant proteins and organisms, companies need the ability to rapidly perform chemical and biochemical experiments. In particular, the ability to scale up to tens of thousands, hundreds of thousands or even millions of experiments is a requirement in todays advanced molecular biology laboratories[1]. While conventional approaches utilize low throughput laboratory equipment like flasks and petri dishes or higher throughput but expensive robots and microtiter plates, droplet microfluidics enables a flexible, affordable, and customizable platform for performing high-throughput experiments in chemistry, microbiology and molecular biology.

Droplet microfluidics is currently being used for enzyme screening, nucleic acid sequencing, protein synthesis, small molecule and single cell analysis, organic and inorganic nanoparticle synthesis in both aqueous and organic systems[2].  Droplet “reactors” are generated on a specially designed microfluidic chip which enables thousands, tens of thousands or even millions of these tiny liquid reaction chambers to be precisely controlled in terms of size, shape, composition and temperature. The ability to manipulate and control these variables together with the ability to parallelize experiments makes droplet microfluidics ideal for processes that require both a high level of precision and a high number of experiments.

Advanced microfabrication technologies enable the flexible design of droplet microfluidic chips such that today a chip design can be customized to the specific application, rapidly prototyped for applications testing using a combination of photolithographic, direct machining and laser- based methods. A typical timeline for iterative prototyping and applications testing to finalize the chip design is 4 to 6 weeks.

Potomac Photonics’ Product & Process Technology team has the expertise to help you throughout the entire product development lifecycle. We will work with you to develop a customized project plan from design concept and prototyping through scale-up and high- volume manufacturing.  Potomac microfluidic and microfabrication experts can even advise you on the design of a microfluidic chip customized for your application and will develop a detailed cost model that will enable you to predict how your unit costs will change as your production requirements increase.

 

[1] Tomasz et al., Lab Chip,2016, 16, 2168-2187

[2] Shang et al., Chem Rev.,2017, 117, 7964-8040

Other Posts

Microfluidic Device to counter the Antimicrobial Resistance (AMR) crisis in healthcare.

March 2020, Astek Diagnostics LLC, won the Maryland Innovation Initiative (MII) Award to develop a microfluidic device to detect bacterial infections in blood and evaluate the antimicrobial susceptibility. Astek, in partnership with Potomac Photonics Inc., will be designing a state-of-the art microfluidic lab-on-chip sensor for rapid detection of microorganisms in bodily fluids (like, blood, urine,…

  • Potomac Photonics
  • July 13, 2020

Black Lives Matter: From Rhetoric to Action for US Companies

We are seeing so many emails and blog posts from companies that say: “We Stand With Black Lives Matter Protesters”.  But when all is said and done, how does a company move beyond rhetoric to action? Saying you support the Black Lives Matter movement is a far cry from hiring and training black people locally…

  • Mike Adelstein
  • June 19, 2020

Potomac adds Precision microfluidic control capabilities with state-of-the-art Flow EZ pumps.

Quality assurance is at the heart of everything we manufacture at Potomac.  It is our attention to product and process control that ensures every microfluidic device, consumer product, medical device and electronic component meets our customers’ rigid standards. Manufacturing Microfluidic technology in particular requires strong quality processes.  In order to fabricate high performing microfluidic devices…

  • Mike Adelstein
  • June 10, 2020