• Potomac Photonics
  • March 19, 2020

Droplet Microfluidics – Making an Impact

Droplet Microfluidics – Making an Impact

With the need to rapidly develop and commercialize new products including biopharmaceuticals, medical diagnostic kits and recombinant proteins and organisms, companies need the ability to rapidly perform chemical and biochemical experiments. In particular, the ability to scale up to tens of thousands, hundreds of thousands or even millions of experiments is a requirement in todays advanced molecular biology laboratories[1]. While conventional approaches utilize low throughput laboratory equipment like flasks and petri dishes or higher throughput but expensive robots and microtiter plates, droplet microfluidics enables a flexible, affordable, and customizable platform for performing high-throughput experiments in chemistry, microbiology and molecular biology.

Droplet microfluidics is currently being used for enzyme screening, nucleic acid sequencing, protein synthesis, small molecule and single cell analysis, organic and inorganic nanoparticle synthesis in both aqueous and organic systems[2].  Droplet “reactors” are generated on a specially designed microfluidic chip which enables thousands, tens of thousands or even millions of these tiny liquid reaction chambers to be precisely controlled in terms of size, shape, composition and temperature. The ability to manipulate and control these variables together with the ability to parallelize experiments makes droplet microfluidics ideal for processes that require both a high level of precision and a high number of experiments.

Advanced microfabrication technologies enable the flexible design of droplet microfluidic chips such that today a chip design can be customized to the specific application, rapidly prototyped for applications testing using a combination of photolithographic, direct machining and laser- based methods. A typical timeline for iterative prototyping and applications testing to finalize the chip design is 4 to 6 weeks.

Potomac Photonics’ Product & Process Technology team has the expertise to help you throughout the entire product development lifecycle. We will work with you to develop a customized project plan from design concept and prototyping through scale-up and high- volume manufacturing.  Potomac microfluidic and microfabrication experts can even advise you on the design of a microfluidic chip customized for your application and will develop a detailed cost model that will enable you to predict how your unit costs will change as your production requirements increase.

 

[1] Tomasz et al., Lab Chip,2016, 16, 2168-2187

[2] Shang et al., Chem Rev.,2017, 117, 7964-8040

Other Posts

Pushing the Limits in 2023

Even after decades of success helping innovators prototype and manufacture the next generation of products in a diverse range of industries, each year Potomac still evaluates how we can develop even more market specific products for the biotech, microfluidics, EV Battery, microelectronics, aerospace, and consumer markets. 2023 is no different. For the year ahead we…

  • Potomac Photonics
  • January 31, 2023

Combining 3D Printing & Microfluidic Devices at UMBC 

To Create Liver on a Chip Research via NIH Grant Drug discovery is in a radical digital transformation period. Historically, developing new pharmaceuticals has been a very long – think years or even decades – and expensive – think billions of dollars – process. A large part of the time and cost in bringing new…

  • Potomac Photonics
  • December 27, 2022

For National Breast Cancer Awareness Month:
Advancing Diagnostics & R&D with Microfluidic Technology

There is a reason that Media Personality Katie Couric announced her June breast cancer diagnosis in the first few days of October. The TV news pioneer strategically timed her public reveal with the start of National Breast Cancer Awareness Month. Started in 1991 by the National Breast Cancer Foundation, the annual month of educational activities…

  • Mike Adelstein
  • October 11, 2022